End-to-End Problems and Solutions in EOSDIS

UC Berkeley: Michael Stonebraker &

James Demmel

UC Santa Barbara: Jeff Dozier & David Siegel

UC San Diego: Joseph Pasquale

UCLA: Roberto Mechoso

DEC/SDSC: Peter Kochevar

LLNL: Richard Watson

http://s2k-ftp.cs.berkeley.edu:8000/nasa_e2e/

Acknowledgements

UC Berkeley: Paul Brown, Richard Troy,

Sharon Smith, Paul Aoki,

Keith Sklower, Jeff Sidell

UC Santa Barbara: Jean Anderson, Debbie

Donahue, Jim Frew

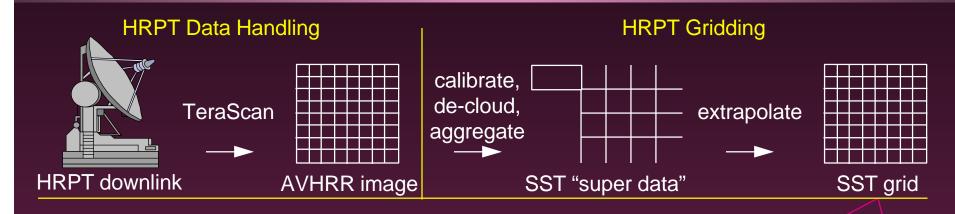
UC San Diego: Norival Figueira

UCLA: Yuechen Chi

DEC/SDSC: Len Wanger, Santiago

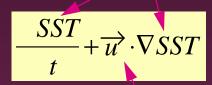
Becerra, Ryan Camoras

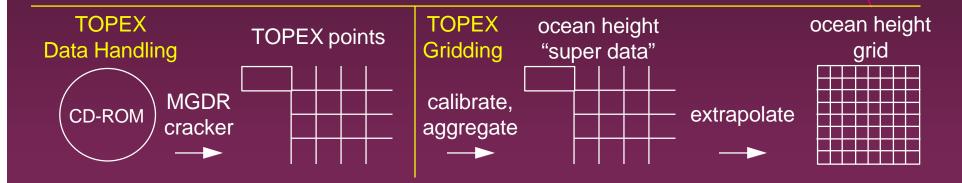
LLNL: Jim McGraw, Steve Louis


Goals

- Validate the UC-proposed Alternative Architecture for EOSDIS by building a 1:1,000 prototype
- Explore bottlenecks in architecture by modeling
- Conduct research to plug holes in architecture

Tenets of the architecture


- All data in commercial object-relational DBMS with a common schema
- Manage workflow as user-defined functions
- Track data lineage
- Eager or lazy evaluation
- Distributed DBMS middleware
- Visualization and science products as DBMS applications


E.g.: AVHRR-TOPEX Fusion

GOAL:

Local and advective components of upper ocean heat balance:

Prototype is in use

UCSB

» Supports satellite data analysis for Dozier and Siegel

UCLA

 Supports modeling of climate, ocean, and atmospheric chemistry for Mechoso et al.

- Supports all tenets of the architecture
 - » except distributedDBMS, in progress
- See the demo!
 - » loading, eager and lazy evaluation
 - » visualization of GCM output
 - » location transparency

Specifics about the prototype

local DBMS: Illustra

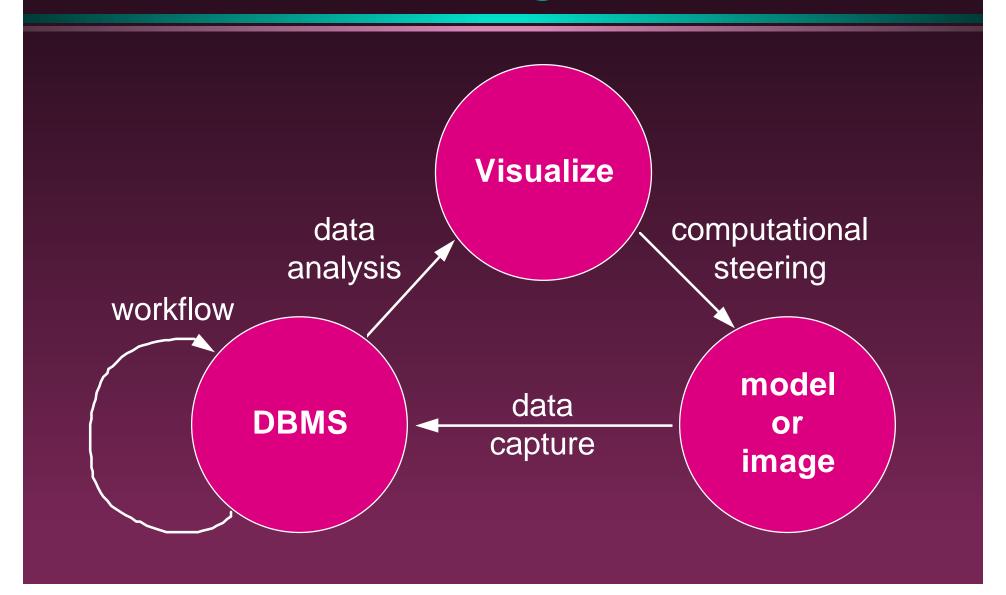
schema: based on FGDC, SAIF, and

lots of work

DBMS type required to get anywhere

extensions:

eager or lazy specified a priori, can save


evaluation: new objects

lineage: part of schema

middleware: primitive, in Tcl

GUI: Illustra "Object Knowledge"

Modeling: the Mechoso Triangle

What is the bottleneck?

- ①CPU cycles for model?
- ②Network bandwidth for internal model data or DBMS capture?
- 3 I/O or CPU for DBMS or workflow functions?
- 4 I/O or CPU for visualization?
- Today ① is unlikely to be the bottleneck
- ② is the bottleneck <u>if</u> storage poorly arranged

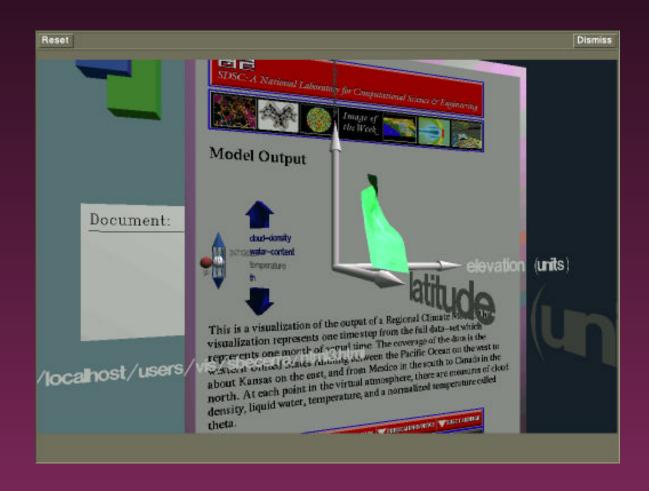
Key technological problems with architecture

DBMS⇔tertiary memory interface must be improved

- working with National Storage Lab at LLNL
- to be integrated with our prototype

Key technological problems with architecture

Scalability of distributed DBMS, with network, to ~1,000 DAACs and SCFs


- Mariposa: a scalable, locationtransparent, distributed DBMS
- Based on economic paradigm
 - » with network, CPU, and I/O resources
- See the demo!

Key technological problems with architecture

Visualization is too primitive and too hard

- Tecate: general data-exploration utility that leverages
 - » Java/VRML-like interpretative language
 - » 3-D hardware
 - » object-oriented specification
 - » DBMS connection

Tecate example

Plans for distribution

- tar-wad "available" now (to real good friends)
- Robust version in early 1996